

, ,

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE								
QUALIFICATION CODE: 07BOSC LEVEL: 7								
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2							
SESSION: JUNE 2023	PAPER: THEORY							
DURATION: 3 HOURS	MARKS: 100							

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER									
EXAMINER(S) DR. MARIUS MUTORWA									
MODERATOR:	DR. RENATE HANS								

INSTRUCTIONS										
1.	Answer ALL the questions.									
2.	Write clearly and neatly.									
3.	Number the answers clearly									
4.	All written work must be done in blue or black in and sketches must									
	be done in pencil									
5.	No book, notes and other additional aids are allowed									

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

NMR and IR Spectral Data, pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page)

• QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- 1.1 Consider the three organic compounds drawn below. Which of the following statements is (are) true about the IR spectra of A, B, and C?

- A. A shows strong absorptions at 3000 cm-1 and 1700 cm⁻¹.
- B. B shows strong absorptions at 3000 cm-1 and 2250 cm⁻¹.
- C. C shows strong absorptions at 3000 cm-1 and 3200-3600 cm⁻¹.
- D. Statements (A shows strong absorptions at 3000 cm^{-1} and 1700 cm^{-1}) and (C shows strong absorptions at 300 cm^{-1} and $3200-3600 \text{ cm}^{-1}$) are true.
- E. Statements (A shows strong absorptions at $3000~\rm cm^{-1}$ and $1700~\rm cm^{-1}$), (B shows strong absorptions at $3000~\rm cm^{-1}$ and $2250~\rm cm^{-1}$), and (C shows strong absorptions at $3000~\rm cm^{-1}$ and $3200-3600~\rm cm^{-1}$) are all true.
- 1.2 Which molecular formula is consistent with the following mass spectrum data?

$$M^{+}$$
 at m/z= 84, relative height=10.0% (M+1)⁺ at m/z= 85, relative height=0.56%

- A. C₅H₁₀O
- B. C₅H₈O
- C. C₅H₂₄
- D. C₆H₁₂
- E. C₄H₆O₂
- 1.3 Identify the structure that is consistent with the following data.
 - a. The IR includes peaks at 1603 and 1495 cm⁻¹.
 - b. The ¹³C NMR has a total of 7 signals.
 - c. The compound has one acidic proton.

- A. A
- B. B
- C. C
- D. D
- E. None of the above
- 1.4 Which of the following compounds will produce a prominent (M-18) peak in the mass spectrum?
 - A. 2-methylheptane
 - B. 1-heptanol
 - C. Heptanamine
 - D. Heptanal
 - E. None of the above
- 1.5 How many different proton environments are present in each of the following molecules?

A.
$$A = 6$$
; $B = 3$ and $C = 4$

B.
$$A = 5$$
; $B = 3$ and $C = 4$

C.
$$A = 6$$
; $B = 4$ and $C = 5$

D.
$$A = 6$$
; $B = 4$ and $C = 4$

1.6 Which of the indicated protons absorbs furthest downfield in NMR?

- A. Ha
- B. Hb
- C. Hc
- D. Hd
- E. He

1.7 Which of the following type of protons are chemically equivalent?

- A. Homotopic
- B. Enantiotopic
- C. Diastereotopic
- D. A & B
- E. B & C

1.8 Which of the following compounds is the kinetic product of the reaction of HBr with 1,3-cyclohexadiene?

- A. A
- B. B
- C. C
- D. D
- E. A & D

1.9 Which of the following statements about Diels-Alder reaction is false?

- A. The reaction is stereospecific
- B. The diene must be in the s-cis conformation in order to react
- C. The dienophile must contain an electron withdrawing group
- D. The diene and dienophile line up so that the exo product is favoured.

1.10 Which of the following dienophiles is most reactive in a Diels-Alder reaction?

- A. A
- B. B
- C. C
- D. D

1.11 Which of the following conjugated dienes would not react with a dienophile in a Diels-Alder reaction?

- A. I
- B. II
- C. III
- D. IV
- E. I & III
- 1.12 Which of the following compounds is not aromatic?

- A. A
- B. B
- C. C
- D. D
- 1.13 What is the IUPAC name for the following compound?

- A. 6-ethyl-3-nitrobenzoic acid
- B. 1-ethyl-4-nitrobenzoic acid
- C. 2-ethyl-5-nitrobenzoic acid
- D. 2-ethyl-5-nitrobenzaldehyde
- E. 4-nitro-3-carboxyethylbenzene
- 1.14 Which structures are aromatic?

C. I and III

D. II and IV

1.15 Arrange the compounds in order of increasing reactivity towards electrophilic substitution?

A. II, I, IV, III

B. I, III, IV, II

C. III, I, IV, II

D. IV, III, II, I

1.16 Which of the following statements is (are) true about electrophilic aromatic substitution?

- A. The methoxy group is an ortho, para activator because of a strong electron donating effect
- B. The methoxy group is an ortho, para director because of a strong electron withdrawing inductive effect
- C. The methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect
- D. Statement A (The methoxy group is an ortho, para activator because of a strong electron donating effect) and Statement C (the methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect) are the only true statements.

1.17 What is the structure of the final product resulting from the sequence of reactions shown below?

A. 1-chloro-4-nitrobenzene

B. 1-chloro-3-nitrobenzene

C. 1-chloro-2nitrobenzene

D. a mixture of 1-chloro-4-nitrobenzene and 1-chloro-2-nitrobenzene

1.18 Choose the best reagent to carry out the reaction below?

- A. K₂Cr₂O₇, H₂SO₄, H₂O
- B. (1) O₃, (2) H₂O
- C. NaOH, H₂O
- D. NaH
- E. None of the above

1.19 What is the correct name for the following compound?

- A. 3-methyl-4-ethyl-3-hexen-6-ol
- B. 4-ethyl-3-methyl-3,6-hexenol
- C. 3-ethyl-4-methyl-3-hexen-1-ol
- D. 3-methyl-4-(2-hydroxyethyl)-3-hexene
- E. 3-(2-hydroxyethyl)-3-methyl-3-hexene

1.20 Select the correct reagent(s) for the following reaction.

O OH
$$\parallel$$
 CH₃CCH₂CH₂CO₂CH₃ \longrightarrow CH₃CHCH₂CO₂CH₃

- A. LiAlH₄/ether; then H₃O⁺
- B. NaBH₄; then H₃O⁺
- C. H₂ and Pt/C
- D. B and C above are correct

1.21 What is the correct name for the following compound?

- A. 1,1,2-trimethyl-1,3-hexenone
- B. 1,2-dimethyl-1,3-hexenone
- C. 2,3-dimethyl-1,3-heptenone
- D. 2,3-dimethyl-2-hepten-4-one

1.22 Select the product of the following reaction.

- A. A
- B. B
- C. C
- D. D
- 1.23 Why do aldehydes undergo nucleophilic addition reactions while esters undergo nucleophilic acyl substitution reactions?
 - A. The carbonyl carbon of an ester is more electrophilic than that of an aldehyde.
 - B. Aldehydes are more sterically hindered than esters.
 - C. Once the nucleophile adds to an aldehyde, the tetrahedral intermediate is too sterically hindered to eliminate one of the attached groups.
 - D. The ester carbonyl carbon is sp³ hybridized while the aldehyde carbonyl carbon is sp² hybridized.
 - E. Once the nucleophile adds to an aldehyde, neither H- nor R- can be eliminated since they are strongly basic.
- 1.24 Which one of the following is the strongest acid?
 - A. benzoic acid
 - B. 4-nitrobenzoic acid
 - C. 4-ethylbenzoic acid
 - D. 4-chlorobenzoic acid
- 1.25 Why would the alcohol in the following compound need to be protected before the reaction?

- A. If it is not protected, the product will be a carboxylic acid
- B. The Grignard reagent will react with the alcohol before the ketone
- C. Magnesium is Lewis acidic and will coordinate with the alcohol
- D. There is no need to protect the alcohol

SECTION B [50]

QUESTION 2 [16]

Identify the lettered reagents (A-H) in the following reaction sequence.

Note: 2 marks for each intermediate

(a)
$$(b) \longrightarrow (b) \longrightarrow (d) \longrightarrow (f) \longrightarrow (h) \longrightarrow$$

QUESTION 3 [14]

Draw a full detailed mechanism for the reaction below. In order to receive full marks, show all intermediates and flow of electrons using the appropriate arrows.

Note: 1 mark for each appropriate arrow

QUESTION 4 [20]

Use the ¹H NMR spectral table provided to identify the structure of compound X with the following ¹H NMR spectral data:

Molecular formula: C₇H₁₄O₂

¹H NMR (ppm)

: 0.94 (doublet, 6 H)

: 1.15 (triplet, 3 H)

: 1.91 (multiplet, 1 H)

: 2.33 (quartet, 2 H)

: 3.86 (doublet, 2 H)

- IR absorption at ~1720 cm⁻¹

THE END GOODLUCK

¹H NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
С-H	0.9–2	C=C	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7	—Н	6.5–8
Z	1.5–2.5	O C H	9–10
—C≡C−H	~2.5	R C OH	10–12
Sp^3 Z Z = N, O, X	2.5–4	RO-H or R-N-H	1–5

Important IR Absorptions

Bond type	Approximate v (cm⁻¹)	Intensity
O-H	3600–3200	strong, broad
N-H	3500–3200	medium
C-H	~3000	
 C_{sp³}-H 	3000-2850	strong
 C_{sp}²-H 	3150–3000	medium
 C_{sp}-H 	3300	medium
C≡C	2250	medium
C≡N	2250	medium
C=O	1800-1650 (often ~1700)	strong
C=C	1650	medium
	1600, 1500	medium

pKa Chart

conjugate ac	cid conjugate base			conjugate acid	conjugate base	
sulfuric acid H ₂ SO ₄	HSO ₄	-10	hydrogen cyanid	e H−C≣N:	➤ C≡N: (cyanide)	9.1
hydroiodic acid HI	l > ⁻	-9		ю́Н	(cyamde)	
hydrobromic acid HB	r	-8	phenols			10
hydrochloric acid HC	i: → ;ci:	-7	water	н ^{;0;} н ——	— : о́ — н	15.7
carbocations +	→ //	-3	primary alcohols	H	(hydroxide)	16
protonated alcohol	→ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-2.4	alkynes	с≣с-н	(alkoxides) C≡C: (acetylide anions)	26
hydronium ion H H H	→ _H ,ö, _H	-1.7	hydrogen	H — H ◀	:H (hydride)	35
nitric acid HNO ₃	——→ NO ₃	-1.3	ammonia/amines	R ^N N _H →	B∕.H	36
hydrofluoric acid HF	— F ¯	3.2			(amide bases)	
carboxylic acids	н → Ё:	4.8	alkanes	→ H	<u></u>	~60

hydrogen 1 H 1.0079																		helium 2 He 4.0026
Ithium	beryllium											I	boron	carbon	ni:rogen	cxygen	fluorine	neon
3	4												5	6	7	8	9	10
LI	Be												В	C	N	0	F	Ne
3.541	9.0122												10.811	12.011	14.007	15.999	18.993	20.160
sodium 11	magnesium 12												auminum 13	s licon 14	phosphorus 15	sulfur 16	chlorire 17	argon 18
														7.7.00				100
Na	Mg												Al	Si	P	S	CI	Ar
22.990	24.305												26.982	28.036	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	1ror 26	∞balt 27	nickel 28	copper 29	2nc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54 938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	s:rontium		yttrium	zirconium	n obium	molybdenum	technet um	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iocine	XENON
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121 76	127.60	126.90	131.29
caesium 55	parium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmlum 76	irdium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatire 85	radon 86
	To a second second	200.00 2.000					1000000	10-10-10-10-10-10-10-10-10-10-10-10-10-1	-	AND DESCRIPTION OF THE PARTY OF		10000	10.0	74575545				000000000
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	185.21	190.23	192.22	195.08	196.97	200.59	204.38	207 2	208 98	[209]	[210]	[222]
francium 87	adium 88	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborg um 106	bohrium 107	hassium 108	meltnerium 109	ununnilicm 110	mrinunrun 111	ununbium 112		urunquadium 114				
	The second																	
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	uun	Uuu	uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]]			

*Lanthanide series

**Actinide series

	lanthanum 57	œrium 58	praseodymium 59	neodymlum 60	promethium 61	samarium 62	en.otinw	gadolnium 64	tertium 65	dysproslum 66	nolmium 67	erblum 68	thullum 69	ytteroium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
١	138.91	14012	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ſ	actinium	thorium	pro:actinum	uranium	neptunum	plulonium	americium	curium	berkelium	californum	eins:einlum	fe mium	mende evium	nobelium
١	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
l	[227]	232 04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]